A Pronounced Catalytic Activity of La–Cu Oxide Supported on ZrO₂ for Reaction between Nitrogen Monoxide and Carbon Monoxide

The reductions of nitrogen monoxide (NO) by carbon monoxide (CO) and hydrocarbon are the fundamental reaction pathways for the removal of NO_x from automobile exhaust (1, 2). Therefore, it is meaningful from the standpoint of basic research to develop and investigate a highactivity catalyst for the reduction of NO by CO, although for the actual exhaust the effects of H₂O and SO₂ cannot be ignored.

It been reported that copperhas containing mixed oxides having perovskiterelated structures such as Bi₂Sr₂CaCu₂O_y, $YBa_2Cu_3O_{v'}$, and La_2CuO_4 show high catalytic activities for the reaction between NO and CO (3, 4) and that the catalysts having the valence of copper ion close to two are active for the reaction (4). We have reported that the perovskite-type mixed oxide, La CoO_3 , can be highly dispersed on ZrO_2 and gave an enhanced catalytic activity (5, 6). ZrO_2 is also known as a suitable substrate for preparing copper-containing superconducting oxide films (7).

We attempted in this study to prepare La_2CuO_4 highly dispersed on the surface of ZrO_2 and obtained a very high catalytic activity for the reaction between NO and CO.

 ZrO_2 was prepared from zirconyl nitrate. Al₂O₃ (JRC-ALO-4) and SiO₂ (Fuji-Davison) were commercially obtained. They were used as supports after calcination in air at 1123 K for 5 h. The surface areas of ZrO_2 , Al₂O₃, and SiO₂ supports were 22, 136, and 176 m² · g⁻¹, respectively. These supports were impregnated with an aqueous solution of copper acetate or with an aqueous solution of a stoichiometric mixture of copper and lanthanum acetates with respect to La_2CuO_4 by an incipient wetness method. The loading amount of copper was 0.60% except for 1.5% of copper-loaded SiO₂ catalyst. They were calcined in air at 1123 K for 5 h. Surface areas of the catalysts after the calcination are given in Table 1. Although the formation of CuO, Cu₂O, and La-Cu mixed oxide could not be confirmed by XRD, the resulting catalysts are denoted by CuO/SiO_2 , CuO/Al_2O_3 , CuO/ZrO_2 , and La_2CuO_4/ZrO_2 , respectively. Studies are in progress to identify the supported oxide. In the case of LaCoO₃ dispersed on ZrO₂ (5, 6), although LaCoO₃ was not detected by XRD, it was made very probable by several characterizations that thin films of La-Co oxide in the ratio of La/Co = 1were formed on the surface of ZrO₂. Transmission electron micrographs were obtained with a JEOL JEM 1250 electron microscope (1000 keV; final magnification, $\times 150,000$).

The reaction between NO and CO was carried out in a closed circulation system (ca. 190 cm³) as described previously (3, 4). The catalysts (50 mg) were mixed with inert SiC (250 mg) to prevent an undesirable temperature rise. The standard procedure was as follows: After the catalysts were treated in O_2 at 573 K for 1 h, the system was evacuated for 15 min at 573 K or the system was cooled to 473 K followed by the evacuation for 15 min at 473 K. Subsequently the catalysts were exposed to the reaction gas mixture at ca. 8 kPa (NO: CO = 1:1). The reaction was carried out at 473 or 573 K. The reaction gas

Catalytic activity and selectivity					
Catalyst	Surface area $(m^2 \cdot g^{-1})$	Reaction temp. (K)	$\frac{\text{Rate}^{a}}{(10^{-14} \text{ mol} \cdot \text{min}^{-1} \cdot \text{g}^{-1})}$	Selectivity ^b (%)	
				N_2	N_2O
La_2CuO_4/ZrO_2	12.7	473	1.0×10^{10}	12	
CuO/ZrO ₂	14.2	473	9.0×10^{8}	16	84
CuO/Al ₂ O ₃	132	473	1.0×10^{9}	0	100
CuO/SiO ₂	170	473	8.0×10^{8}	0	100
Bi-Sr-Ca-Cu-O ^c	0.7-0.8	573	$0.8 - 1.0 \times 10^{10}$	ca. 90	ca. 10
Y-Ba-Cu-O ^c	0.7-0.8	573	$0.5 - 1.0 \times 10^{10}$	ca. 90	ca. 10
$Rh/Al_2O_3^d$		473	2.0	100	C

TABLE 1

^{*a*} La₂CuO₄/ZrO₂, Bi-Sr-Ca-Cu-O, and Y-Ba-Cu-O; the average rates of the CO consumption for the first 10 min. CuO/ZrO₂, CuO/Al₂O₃, and CuO/SiO₂; the average rates of the CO consumption for the first 60 min because of their very small rate.

^b La₂CuO₄/ZrO₂, Bi-Sr-Ca-Cu-O, and Y-Ba-Cu-O; the selectivities to the reaction products of NO after 10 min. CuO/ZrO₂, CuO/Al₂O₃, and CuO/SiO₂; the selectivities to the reaction products of NO after 60 min because of their very small rate. The product distribution was nearly constant for the first 10 min and 60 min or the former catalysts and the latter catalysts, respectively.

^c Cited from Ref. (3).

^d Calculated from Ref. (1), assuming that Rh loading was 0.01 wt% and the Rh dispersion was 12%.

and products were analyzed with a gas chromatograph that was directly connected to the reaction system as described previously (3, 4). The N and C balances were confirmed to be good.

NO reacted with CO at 473 K over La₂ CuO_4/ZrO_2 to form N_2O , N_2 , and CO_2 . The main products were N_2O and CO_2 , and the amount of N₂ formed was small. The ratio of the amount of NO uptake to that of CO uptake was 1.7, close to 2, showing that N₂O is formed by the reaction, $2NO + CO \rightarrow N_2O + CO_2$. A similar time course was observed upon repeated reactions. The reaction proceeded over the other copper-loaded catalysts at 473 K in a manner similar to that over $La_2CuO_4/$ ZrO_2 ; the main products were CO_2 and N_2O and the selectivities and the rates changed little upon a repeated run over each catalyst. By contrast, when the reaction was carried out at 573 K over La₂ CuO_4/ZrO_2 , the main products changed to N_2 (selectivity 80%) and CO_2 as was observed for the perovskite- and K₂NiF₄type mixed oxides, Bi-Sr-Ca-Cu-O and Y-Ba-Cu-O(3).

The total turnover number of $La_2CuO_4/$ ZrO₄ (i.e., the number of CO reacted per number of copper loaded) for runs 1-2 was greater than 50 showing that the reaction is catalytic. It is noteworthy that the catalytic activity of La_2CuO_4/ZrO_2 for the reaction between NO and CO was the highest among the catalysts listed in Table 1, which summarizes the stationary rates and selectivities (8). The difference in the activities among the catalysts supported on various oxides cannot be explained by the difference in the surface areas of the catalysts. It was reported that the catalytic activities of Bi-Sr-Ca-Cu and Y-Ba-Cu mixed oxides having Bi₂Sr₂CaCu₂O_y and YBa₂ $Cu_3O_{y'}$, structures, respectively, were of the highest level among the perovskitetype and its related mixed oxides (3).

Furthermore, even using the number of the whole copper atoms of the catalysts, the calculated turnover frequency of La₂CuO₄/ ZrO₂ was still 1.8×10^{-2} molecules $\cdot s^{-1} \cdot$ (total Cu-atom)⁻¹. This value is ca. 10⁷ times higher than the turnover frequency of Rh/ Al₂O₃ catalyst (2.9 × 10⁻⁹ molecules $\cdot s^{-1} \cdot$ (surface Rh-atom)⁻¹ at 473 K, extrapolated value based on the data in Ref. (1)) and comparable to the turnover frequency of active Rh(111) $(2.2 \times 10^{-2} \text{ molecules} \cdot \text{s}^{-1} \cdot (\text{surface Rh-atom})^{-1}$ at 473 K, extrapolated value of Ref. (1)). The automotive exhaust contains a variable amount of SO₂ that often poisons copper catalysts. Therefore, this comparison does not necessarily mean the superiority of the present catalyst for automotive exhaust. However, it is noteworthy that copper ion-exchanged zeolites are fairly resistant to SO₂ in actual automotive exhausts (9).

The high activity of La_2CuO_4/ZrO_2 may be explained by (1) high dispersion of copper on the surface of ZrO_2 resulting from the suppression of the reaction between copper and ZrO_2 caused by the added lanthanum and/or (2) maintenance of the valence of copper close to 2, where the activity for the reaction between NO and CO was the highest (4). In favor of the former idea, any segregated particles of La₂CuO₄ were not detected by TEM and no formation of CuO, Cu₂O, or La-Cu oxide was observed by XRD. Although the structure of La_2CuO_4 on ZrO_2 is not yet known exactly, it may at least be stated that La-Cu oxide supported on ZrO_2 is an excellent catalyst for the reduction of NO by CO.

ACKNOWLEDGMENT

This study was supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan.

REFERENCES

- 1. Oh, S. H., Fisher, G. B., Carpenter, J. E., and Goodman D. W., J. Catal. 100, 360 (1986).
- 2. Oh, S. H., J. Catal. 124, 477 (1990).
- Mizuno, N., Toyama, H., Tanaka, M., Yamato, M., and Misono, M., Bull. Chem. Soc. Jpn. 64, 1383 (1991).
- Mizuno, N., Yamato, M., Tanaka, M., and Misono, M., Chem. Mater. 1, 232 (1989).
- 5. Mizuno, N., Catal. Today 8, 221 (1990).
- Fujii, H., Mizuno, N., and Misono, M., Chem. Lett., 2147 (1987).
- Lathrop, D. K., Russek, S. E., and Buhrman, R. A., Appl. Phys. Lett. 51, 1554 (1987).
- The time course of each catalyst in the second run was similar to that in the first run. In this work, the stationary rate and selectivity were defined by those for the first 10 min in the second run except for CuO/ ZrO₂, CuO/Al₂O₃, and CuO/SiO₂ (see footnote of Table 1).
- 9. Iwamoto, M., Yahiro, H., Shundo, S., Yu-u, Y., and Mizuno, N., *Appl. Catal.* **69**, L15 (1991).

Noritaka Mizuno¹ Mika Yamato² Mika Tanaka Makoto Misono³

Department of Synthetic Chemistry Faculty of Engineering The University of Tokyo Hongo, Bunkyo-ku Tokyo 113 Japan

Received March 5, 1991; revised July 1, 1991

¹ Present address: Catalysis Research Center, Hokkaido University, Sapporo 060, Japan.

² Present address: Asahi Chemical Industry Co., Ltd., Yako, Kawasaki-ku, Kanagawa 210, Japan.

³ To whom correspondence should be addressed.